Physics for Artists
Fall 2012

1%
| g/

Valerio Paolucci
Michael Leitch




The Mathematical Beauty of Nature

Fractal geometry, and L-systems in the Visual Effects Production

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a
stern perfection such as only the greatest art can show. The true spirit of delight, the
exaltation, the sense of being more than Man, which is the touchstone of the highest
excellence, is to be found in mathematics as surely as poetry.”

Bertrand Russel

Introduction

The natural world in which we live is as beautiful as intricate and incomprehensible to
us men, but it is perhaps it’s infinite complexity that makes it the perfect playground for
the human mind, and that fuels our will to discover nature’s most obscure truths and
hidden laws.

Mathematics stands at the core of the eternal struggle for knowledge that is so
characteristic of the human specie, and strive to seek out patterns and formulate new
conjectures, to provide us with a language, and the tools to ultimately understand and
even predict natural phenomena.

The aim of this essay is to provide visual effects artists of any level with an overview on
fractal geometry, and a basic knowledge of the logic and grammar of L-systems, as well
as an understanding of the possibilities offered by a procedural approach to 3D
modeling. Mathematical technicalities, and extremely hard concepts such as fractal
dimension are here completely ignored, for | myself am still far from being capable of
understanding them. Perhaps half of the power of fractals comes from the fact that they
can be approached entirely heuristically, and therefore anyone who is interested in this
fascinating topic is invited to read along.

A qualitative overview of fractals

The challenge of Computer Graphic, and specifically the pursuit of realism, is largely a
problem of reproducing the beauty of Nature and its visual complexity with synthetic
images. Fractal geometry is a language of visual complexity that is particularly suited to
describe the kinds of forms found in Nature, and is utilized in CG to model plants,
terrains, and other effects such as smoke, fire, and clouds, as well as for creating
textures.




The first time | got my hands on a 3D program | was maybe ten years old, and only now,
13 years later, | realize that was my first experience playing with fractal geometry.

The software was Bryce, a 3D modeling, rendering, and animation package specialized
in fractal landscapes developed by Ken Musgrave, a student of Benoit Mandelbrot, the
father of fractals.

But what exactly is a fractal? To use the words of K.Musgrave “a fractal is a
geometrically complex object, the complexity of which arises through the repetition of
form over some range of scale”. [277]

Here the concept of Self-Similarity is introduced, and to explain this further Musgrave
writes of the existence of two kinds of complexity in our world: fractal, and non fractal.
Non-fractal complexity is generated by the combination of a variety of features through
distinct and unrelated events over time, like holes and stains on a pair of shoes, while
fractal complexity can be achieved simply by repeating the same thing over and over, at
different scales.

Fractals are self-similar patterns, and many objects in the real world are statistically
self-similar. What is also fascinating is the symbiosis that exists between fractal
geometry and computer graphic. The latter, developed in the 60s, was fundamental for
further advancements in the field of fractal geometry, for it provided us with the ability
to quickly create visual representations of complex mathematical algorithms. What's
better than feed data to a computer, let it process the data, and get the results back in
the form of an image? Fractals on the other hand have helped pushing the boundaries
of CG by providing much of the visual complexity in realistic computer graphics.

Procedural modeling and texturing

The term procedural (procedural generation) refers to content generated
algorithmically rather than manually. Any person who has experience modeling with a
3D software like Maya, or 3dsMax knows very well how challenging it can be to build
visually complex objects by hand, namely by moving vertices around the 3D space.

A 3D character model won’t look good until a satisfactory level of detail (complexity) is
reached. That is because our eyes are so used to seeing complex forms around us that
they will immediately notice, and even be disturbed, by lack of complexity.

That can be achieved in many ways, like by adding accessories, surface detail, and
textures to a model. In the case of a character this has to be done manually, for the
exception of procedural textures that may come in handy for quickly adding surface
detail, but more on this later. While in the case of a terrain, or plants, the modeling
process can be almost entirely procedural, which offer several advantages.




L-systems

In 1968 Hungarian biologist Aristid Lindenmayer developed a string rewriting
mechanism to visually describe the growth process of various types of algae he was
studying, and other simple multicellular organisms. Rewriting is a technique utilized in
mathematics, computer science, and logic for defining complex objects by starting from
a simple initial object, and successively replacing its components using a set of
rewriting rules, also known as production rules.

The core of a Lindenmayer system is called the axiom, which is nothing but the simple
initial object mentioned above. Production rules are then applied to the axiom to
generate a more complex string of symbols.

Example: Axiom = DOG Output: generation1= GOD
generation2 = GOD
generation3= GOD

The next step to understanding the logic of L-systems is to observe what happens when
a recursive rule is applied. That is the case of a symbol being replaced with a copy of
itself plus something else. A growth pattern emerges:

Axiom = DOG Rules= D=DGD Output: generation1=DGDOG
generation2 = DGDGDGDOG
generation3= DGDGDGDGDGDGDGDOG

G=06
0=0

An L-system is basically a set of rules for strings made of a set of symbols, and can be
split into 4 main components:

A set of variables: symbols that can be replaced by production rules

A set of constants: symbols that aren’t affected and remain the same

A single axiom string that can be composed of variables and/or constants

A set of production rules that always consist of 2 strings, predecessor and successor
(D=DGD]

Recursive L-systems like the one shown above often produce intricate patterns that are
self-similar across multiple scales. Nevertheless it'd be very hard, and simply
impossible for most people, to perceive these patterns just by looking at a string of
symbols.

To obtain a visual representation [or geometric interpretation] of a string of symbols we
need to apply a ‘drawing instruction meaning’ to each symbol in the system. The most




common graphic interpretation applied to L-systems is based on turtle graphics, a
method of programming vector graphics using a relative cursor upon a Cartesian plane
developed in the 60s by Seymour Papert as an addition to the Logo programming
language.

The turtle [cursor] has 3 attributes:

- its location on the Cartesian plane, therefore represented by x andy

- its orientation, or heading

- a pen: which symbolizes the turtle’s ability to add qualitative elements such as color
and width to its wake

The state of the Turtle at any given point of the plane is defined by [x,y,a] where x,y
define its location and « its heading. Given a step size d and an angle increment 9 the
turtle can respond to commands represented by the following symbols:

F Move forward a step of length d drawing a line. The turtle moves to (x',y, &)
where x’= x + dcosax and y’=y + d sin «.

f Move forward a step of length d without drawing a line.

+ Turn left by angle &. The turtle rotates to (x, y, & + &) without moving forward.
- Turn right by angle d.

The following examples of basic fractal curves were described by Swedish
mathematician Helge von Koch at the beginning of the 20th century, and are shown
here using the grammar of L-systems:

Koch Curve
Axiom : F

Constants : +, -
Production rules: F = F-F++F-F m
Initial degrees: 00.0 2

Angle increment d: 60.0

First 3 generations: [output]

1 F-F++F-F

2 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F

3 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F-F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F
++F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F-F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F




Koch Snowflake:
Axiom : F++F++F

Constants : +, -

Production rules: F = F-F++F-F
Initial degrees: 00.0
Angle increment d: 60.0

First 2 generations: [output]
1 F-F++F-F++F-F++F-F++F-F++F-F
2 F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-F+
+F-F++F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F

Today several 3D packages like Houdini are capable of implementing the rules of L-
systems to quickly create realistic 3D plants. One of the advantages of working with L-
systems to generate procedural complex geometries is certainly that of saving time.
However creating a procedural tree that closely resembles a specific real tree can take
quite a bit, and having to create digital doubles of real objects/characters is a common
task for a 3D post-production facility. The greatest advantage is that once the model is
generated it is very inexpensive to make changes, whereas it'd be very tedious and time

consuming (if not impossible] to apply major changes to a manually built complex
geometry.

Building a Tree

Additional symbols need to be added to the grammar of L-systems in order to obtain
more complex shapes and to mimic the branching effect typical of plants.

Different softwares use different symbols to execute the same kind of operations, in
general those symbols can behave either as a variable, or as a constant, and can draw
or skip a segment.

In the following 2 examples the symbols x andy are added to the grammar in order to
build more complex strings. In the first case they are used as a constant, and in the
second as a variable. In both cases they don’t execute any command, and therefore do
not directly affect the cursor [they are ignored by the turtle]. They can only affect the
way F is rewritten at each iterations.

To mimic the branching effect of a plant we use square brackets [1. Everything written
inside the brackets gets executed separately.




Tree

Axiom: F

Constants +, -, x,y,

Production rules: F =FF-[-F+F+F]+[+F-F-F]
Initial degrees: 85.0

Angle increment d: 22.0

Plant

Axiom: x

Constants +, -,y

Productionrules: F=FF  x=F-[[x]+x]+F[+Fx]-x
Initial degrees: 90.0

Angle increment d: 20.0




Many fractals like those shown so far can be thought of as a sequence of segments. You
may have noticed that the value of d, the step size, was never taken into consideration.
That is because the software used to write those systems doesn’t support changes to
the parameter. d remains a constant in every example, and it's simply scaled down at
every iterations so that the image can fit the screen. Those systems are also
deterministic, meaning that there’s only one correct answer for each generation.
Probability based random variations can be added to the systems to construct more
realistic natural shapes.

Probability is added to the system by adding alternative production rules as show here:

Production rule: F= F-F++F-F or F+E-F
with probability (sum=1.0) 5.0 5.0

In this case we have a 50% chance that the string F will be replaced by either one of the
two strings. Depending on the software capabilities it may be possible to add several
other output strings, each one with it's own rate of probability.

In real life the growth of a plant can be affected by a variety of unpredictable factors
both internal organic developmental errors, and external factors such as the effect of
wind, sun, and water. These unpredictability can be resembled by intentionally adding
errors to the system.

Affecting the way the patterns are generated will result in topology mutations [different
numbers of segments connected differently] that resemble those determined by
internal factors, while external factors can be mimed by slightly changing the angle and
length of a segment.

While these effects could be produced manually [to achieve specific results], by writing
alternative output strings as shown above, softwares are usually equipped with an ‘error
editor’ that leaves this task almost entirely to the computer.

Examples of mutations on a tree

output: output:
FF-[-F+F+F]+[+F---F] FF-[-F+F+F]+[+F-F-FIFF-[-F+F+F]+[+F-F-F]




Conclusion

The fractals we have observed are all considered to be 1 dimensional since they only
exists on a plane. 2D and 3D dimensional fractal geometries can be created with the
help of specific softwares. L-systems are just one of several languages that can be used
to visually interpret fractals.

Procedural textures are another powerful tool in the hands of a 3D artist, and as
mentioned above they are a great way of quickly and inexpensively adding visual
complexity to a model. [the term inexpensive refers here to the amount of memory
required by the cpu to process a certain operation] Algorithms are used to create
realistic representations of natural elements like wood, granite, metal, and stone, and
the natural look is achieved by the usage of fractal noise.

One of the most popular procedural texture is the Perlin Noise, which secured his
inventor Ken Perlin an Academy Award for Technical Achievement in 1997.

The Perlin noise is considered to be a primitive gradient noise, and can be used to
generate a wide variety of procedural textures. Thanks to its controlled random
appearance it can be used to create effects such as smoke, fire, and clouds.

| personally find computer generated art to be the most fascinating among all , because
despite its intangible nature it is by far the most complex, as it incorporates so many
different branches of the human knowledge.

Valerio Paolucci
[3D Artist]

121612012

Sources

Texturing & Modeling A procedural approach F.Kenton Musgrave

The Algorithmic Beauty of Plants P.Prusinkiewicz A.Lindenmayer

Creating a digital tree and Using L-systems in Production
for What Dreams May Come David Prescott [Digital Domain]

http://classes.yale.edu/fractals/software/swinglsystem.html
http://www.cs.unm.edu/

http://en.wikipedia.org







